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 A B S T R A C T

Caenorhabditis elegans is a great model for exploring organismal, cellular, and subcellular biology through 
optical and fluorescence microscopy, with its research applications steadily expanding. However, manual 
processing of numerous microscopic images is prone to errors and demands significant labor due to worms 
tendency to touch or cluster with each other. Here, we present a new system for segmenting whole-
body instances of Caenorhabditis elegans in microscopic images (referred to as SegElegans), employing a 
combination of neural network architecture and conventional image processing techniques. Our method 
effectively overcomes previous challenges and resolves many instances of contact and overlap between worms 
in highly populated images in a timely manner. The results obtained show an average Intersection over Union 
value of 96.3% per worm and an average improvement of 6% over other existing methods for automated 
analysis of worm images. SegElegns is a user-friendly application for Caenorhabditis elegans segmentation 
that will benefit whole-worm phenotypic screenings essential for studying development, behavior, aging, and 
disease.
1. Introduction

Having been used as a laboratory organism for more than half a 
century, the nematode Caenorhabditis elegans (C. elegans) has been in-
strumental in providing knowledge nearly in all aspects of biology [1]. 
Its short lifespan of about three weeks, its compact size of 1 mm, its 
transparency, and its high amount of genomic conservation relative to 
the human genome, make this animal model very attractive to study 
neurodegenerative diseases, and create/test new drugs [2]. Worms can 
be grown abundantly in small spaces, such as Petri dishes, facilitating 
cost- effective and scalable assays. Currently, applications continue to 
be developed taking advantage of all these characteristics to test differ-
ent treatments and medicines in the fields of biology, pharmaceuticals, 
and cosmetics.

For phenotypic screening assays, researchers usually perform man-
ual labeling tasks to segment/label each of the worms one by one and 
thus be able to obtain information about each of them [3–5]. The pro-
cess can be quite tedious and time-consuming, especially when trying 

∗ Corresponding authors.
E-mail addresses: pablacas@doctor.upv.es (P.E.L. Castro), kostas_kounakis@imbb.forth.gr (K. Kounakis), angar25a@upv.edu.es (A.G. Garví), 

igkikas@imbb.forth.gr (I. Gkikas), ioan.tsiamantas@gmail.com (I. Tsiamantas), tavernarakis@imbb.forth.gr (N. Tavernarakis), asanchez@isa.upv.es 
(A.-J. Sánchez-Salmerón).

to gather data from large amounts of worms to achieve high-quality 
statistics. A basic whole worm selection (closely surrounding the whole 
body) by an experienced used can take about 20 s per worm, while a 
high precision selection (as close to the actual edge of the animals as 
image resolution allows), which is often needed in images with high 
numbers of touching and overlapping worms, can take a full minute 
per worm. The produced full-body high-precision masks/segmentations 
allow for quick and easy morphological measurements (body dimen-
sions) in brightfield images. They can also be transferred to darkfield 
fluorescence images that have been taken simultaneously by the same 
system for more ‘‘advanced’’ types of analyses, like quantification of 
fluorescence intensity per worm [6,7], use of specialized algorithms to 
measure fluorescent marked particle amount and dimensions [8], mea-
sure protein aggregation [9,10], or assess organelle network structure. 
Obtaining individual information and using it for statistical analysis of 
the population is the best option for scientific analysis. This produces 
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higher-quality statistics than alternative options (like taking whole 
image mean values and relying on just summary statistics) by allowing 
us to properly quantify population variance; this can be especially 
helpful at revealing sub-populations with distinct behavior that has 
potential biological significance. For instance, there is a biologically 
relevant difference between a treatment reducing a protein level by 
50% in all animals or reducing it by 90% in half of the animals and 
per-worm analysis is needed to detect it. Thus, when trying to automate 
these experiments, full masks/segmentations of each individual worm 
are preferred.

Currently, some applications automatically segment worm popu-
lations into individual masks using image processing. This can be a 
challenge, due to the large number of pixels in the image, and because 
algorithms may not be strong enough to distinguish highly complex fea-
tures. It can be even more difficult when there are areas/segmentations 
of interest that are connected/overlapping or when the images contain 
noise that can lead to segmentations that do not correspond to true 
areas of interest. In images of C. elegans, noise typically comes in the 
form of eggs and small larvae, organic waste, or other foreign objects of 
no interest. Their intensity in gray levels is similar, making it difficult to 
differentiate segmentations of worms from noise, and the issue is even 
worse when this noise is in contact or close to real worms. Neverthe-
less, traditional image processing applications have demonstrated some 
good results of individual worm masks/segmentations on population 
images by using skeleton segmentation, analyzing poses, intersections, 
ends [11–13], or active contours [14]. But detecting and segmenting 
pixels or areas of interest with traditional image processing techniques 
requires some advanced operations and designing robust algorithms 
capable of identifying patterns, extracting relevant features or filtering 
noise, not to mention of dealing with cases of connected, overlapping 
segmentations. All of this leads to increased code complexity, longer 
processing times and increased computational load. On the other hand, 
deep-learning techniques and neural networks for image segmentation 
have demonstrated more reliable results, being faster and more robust 
in the presence of noise [15–18], even using DIY Microscopes [19]. 
However, training these methods requires a big and varied dataset. The 
cost of a labeled dataset is also high, but the results that these tech-
niques offer are worthwhile compared to manually labeling hundreds 
or thousands of experiments to be performed. The currently best-known 
neural network architecture to obtain segmentations is U-Net [20]. 
This type of architecture was first designed to segment biomedical 
images, and nowadays researchers configure and adapt this network 
architecture to obtain better results with different datasets [21]; with 
biological images [22], objects [23], C. elegans[24], etc.

Although there are other architectures for pixel segmentation, such 
as Mask R-CNN [25], which has a robust structure capable of detecting 
objects and offering high segmentation accuracy, it requires more 
computational resources. As a result, its training and parameter tuning 
tend to be slower compared to lighter models, such as U-Net [20]. 
On the other hand, models based on U-Net architectures, such as 
EmbedSeg [26], or variations of U-Net [27–29], are simpler and easier 
to implement, not to mention that their accuracy is just as high and 
memory usage is low, which makes them ideal for complex tasks and 
large datasets.

In our previous approach [24], we solved multiple worm overlaps 
for low-resolution images. This method used 2 images (previous and 
present) and a neural network to predict the actual pose (skeleton) 
of each worm respectively. Although very good results were obtained, 
there were cases that were difficult to solve, even visually. Cases such 
as worms in contact, in parallel, partially in parallel, etc. Visually 
they may appear to be touching, but it may be the case that they 
are overlapping. The problem with low-resolution is the poor grey-
level information. You cannot distinguish worm parts such as edges, 
overlapping parts, and non-overlapping parts, because the grey-level is 
the same. On the other hand, in high-resolution microscopic images, 
these parts have different grey-levels and can be segmented using 
2

advanced image processing techniques such as convolutional neural 
networks. A correct segmentation of these parts can help to correctly 
identify each worm in densely populated images.

This work presents a new application to obtain individual whole-
body segmentation of C. elegans in microscopic images referred to as 
SegElegans. Our approach utilizes a hybrid methodology that combines 
U-Net architecture with double decoding with traditional image pro-
cessing techniques. SegElegans shows remarkable performance in ob-
taining individual masks/segmentations of worms in densely populated 
images and can resolve many of the cases of contact and overlapping 
between worms and with image noise with great effectiveness.

2. Methods

2.1. Caenorhabditis elegans strain and culture conditions

All image training has been done with WT worms (N2 Bristol) grown 
as standard [30] on Nematode Growth Medium (NGM) covered with
E. coli (strains OP50 or HT115). Animals were grown at 20◦ for a 
varied number of days in order to achieve higher variation in animal 
ages and sizes for the training/validation/test datasets. The range of C. 
elegans populations used in each image were between 3 to 30 worms. 
This variation in population density allowed us to train models capable 
of accurately obtaining and distinguishing segmentation regions of 
interest.

2.2. Image capture system

Image acquisition for the training/validation/test dataset was per-
formed using the EVOS FL Auto 2 epifluorescent microscope. EVOS, it 
is a ThermoFisher Scientific product (HQ in Waltham Massachusetts) 
and is made by Life Technologies Corporation in Bothell Washington 
(the western Washington). The captured images had various cases 
of overlap and contact between C. elegans, with worm populations 
varying between 3 and 30 worms. For greater variability of the dataset, 
different exposure/brightness/contrast settings were performed during 
image acquisition, and rotation and flip operations were also intro-
duced during training/validation. These configurations allowed us to 
develop more robust deep-learning models in the presence of noise 
and various problematic segmentation scenarios. As a result, better 
segmentations of individual C. elegans were obtained, resolving many 
of the cases of overlap and contact between them.

2.3. Proposed neural network

This paper aims to obtain segmentations or individual masks in 
microscopic gray images of C. elegans. For this, we use two segmen-
tation images. The first image (Fig.  1 Output1) contains segmenta-
tions of: background (black segmentation), worm edges (red segmen-
tation), overlapping parts between worms (green segmentation), and 
non-overlapping worm parts (blue segmentation). The second image 
(Fig.  1 Output2) contains background (black segmentation) and worm 
skeleton (white segmentation).

The proposed neural network model (Fig.  1) consists of three neural 
network blocks, one encoder block (orange and yellow blocks) and two 
decoder blocks (purple and light-blue blocks). The encoder block be-
longs to the SmaAt AT neural network model [21], this model is based 
on the U-Net architecture [20] with the difference that instead of using 
regular convolutional operations it uses depth-separable convolutions 
and adds CBAM attention mechanism to the encoder. CBAM blocks 
are applied after double convolution blocks (DoubleConv2D) and allow 
important features to be identified. For the decoder block, we replace 
the double convolution typical of U-Net architectures with convolution 
blocks and Long Short-Term Memory block (ConvLSTM) [31]. Although 
the ConvLSTM block is designed to work with temporal sequences, in 
this case the dimension of the time axis, T, is set to 1, which means 
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Fig. 1. Proposed neural network model. The proposed model uses the encoder of the SmaAt AT model proposed by [21] (orange and yellow blocks) and for the decoder part 
uses the ConvLSTM block [31] (purple blocks) instead of the typical double convolution of U-Net architectures.
that the model perceives a single sequence for each input. This allowed 
the model to learn complex spatial relationships between concatenated 
features. This convLSTM block [31] according to the author is a little 
different from the original article [32]. This convLSTM block simplifies 
the original block by removing direct connections to the previous cell 
state and using an intermediate state gt, which makes the cell update 
more modular. These differences make the model easier to implement 
and less computationally expensive.

2.4. Training/validation and testing method

The dataset consists of 100 images of size 1328 × 1048, 50 images 
for training/validation (70% training, 30% validation), and 50 images 
for testing. Due to the dimensions of the input image and hardware 
limitations we divide the input image and the ground-truth images into 
512 × 512 pixel windows. As a data augmentation technique and for 
greater variability in training/validation, each image was divided into 
64 parts using 512 × 512 pixel windows. Each crop was performed in 
steps of 102 pixels for the X-axis (1328px dimension), and steps of 67 
pixels for the Y-axis (1048px dimension). Rotations of 90, 180, 270, and 
360 degrees and horizontal and vertical flips were also applied. Before 
starting the training and validation, the name of each image and the 
position of the 64 512 × 512 windows were saved in two lists. During 
training and validation, rotations and flips were applied randomly.

The loss function used to train/validate the networks were the 
PyTorch function ‘‘BCEWithLogitsLoss()’’ and ‘‘CrossEntropyLoss()’’. 
CrossEntropyLoss() is a Pytorch loss function for class classification. 
This function was used to train/validate output1 (Fig.  1), which con-
tains 4 classes: Background segmentation (black), edge segmentation 
(red), overlapping worm segmentation (green), and non-overlapping 
worm segmentation (blue). On the other hand, Binary Cross Entropy 
Loss with Logits Loss or BCEWithLogitsLoss() is another Pytorch loss 
function for binary classification, that is, for single-unit output clas-
sification. This function was used to train/validate Output2 (worm 
skeleton segmentation). A learning rate scheduling function was used 
for the training phase. This function allowed the learning rate to be 
lowered progressively by multiplying the initial learning rate by a given 
function (Eq.  (1)). 

𝑙𝑎𝑚𝑏𝑑𝑎_𝑓𝑛 =
(

1 −
𝑒𝑝𝑜𝑐ℎ

𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑜𝑐ℎ

)0.9
(1)

Where epoch is the current epoch number ranging from 0 to 499, and
total epoch is the total epoch value of the training(500). The learning 
rate value was 0.0001, so for epoch 0 the learning rate value was 
0.0001, for epoch 2 it was 9.9628E−5, for epoch 100 it was 7.6508E−5 
and for the final epoch (499) it was 1.8002E−7.
3

2.5. Post-processing method

The proposed neural network model has two images as output. To 
obtain the final segmentations that we will use in the post-processing 
method (Fig.  2b and Fig.  2c), a threshold of 0.5 was first applied to 
each output, i.e., if the pixel value is greater than or equal to 0.5 its 
value is one otherwise its value is zero. The first image after applying 
the threshold of 0.5 contains the segmentations of worm edge parts, 
overlapping parts, and non-overlapping worm parts. The second image 
contains the skeleton segmentation of all the worms in the image. These 
two images were used to design a post-processing method capable of 
separating overlapping worms or those in contact with each other (Fig. 
2f), i.e., obtaining individual segmentations or masks of each worm in 
an input gray image (Fig.  2a).

The post-processing method consists of 2 parts, the first part is 
responsible for obtaining the segmentations of non-overlapping worms 
(Fig.  2d), i.e., individual worms, worms that have contact at the edges 
or at the ends. To obtain this segmentation we analyzed the overlaps in 
these areas (Fig.  3 a, b, c) using the skeleton segmentation image (Fig. 
3 d,e,f) to identify true-overlaps from false-overlaps segmentations. 
The criterion is that if those overlapping worm parts (green color) 
contain skeleton segmentation in the same position, then it belongs to 
true-overlap segmentations, otherwise it belongs to false-overlap. The 
false-overlap result and edge segmentation (red channel Fig.  2b) were 
used to separate non-overlapping worms (Fig.  3d) from overlapping 
worms (Fig.  3e). Edge and skeleton segmentation were only used in 
overlap or contact cases as a preventive step to filter out false positives.

The second part of the post-processing is responsible for obtaining 
the worm segmentations in true-overlaps (Fig.  2e), for this it divides the 
segmentations into none-overlapping worm parts (color segmentations) 
and overlapping parts (green segmentation) using the edge segmenta-
tion (red channel Fig.  2b). A recursive function is used to join the parts 
and create a complete worm segmentation (Fig.  4b). This function takes 
a none-overlapping part, e.g. part 1 (light-green part Fig.  4a), and finds 
the next best none-overlapping part (part 4) that is connected to the 
same overlapping part, this is repeated until there are no more parts to 
join. The next best none-overlapping part was obtained by analyzing 
the angles of the other none-overlapping parts connected to the same 
overlapping part. If the angle was equal or with a difference of ± 20◦
it was considered part of the same worm body, otherwise it was from 
another worm. The results after separating connected worms from Fig. 
4a are shown in Fig.  4c, d, e.

In images of densely populated worms, the worms may be above 
or below each other, or part of their body may be wrapped around 
one or more other worms. For example, in Fig.  4 (see gray image Fig. 
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Fig. 2. Post-processing method. (a) Worms gray-image (input data to the proposed neural network model). (b) Worm segmentation into parts (worm edges, overlapping parts, 
and non-overlapping parts). (c) Segmentation of worm skeletons. (d) Non-overlapping worms (individual worms and worms in contact between edges or ends). (e) Overlapping 
worms divided into parts (each color represents a part of each worm and overlapping part in light-green). (f) Prediction of individual worms, each color represents each worm 
(non-overlapping worms [1–16] and separate overlapping worms [17–26]).
Fig. 3. Post-processing method, part 1. Identification of overlapping parts and parts in contact with other worms. (a) Overlapping worms at edges (edge contact). (b) Overlapping 
worms at head/tail ends (end contact). (c) Overlapping worms on other parts of the body (true-overlap). (d, e, f) Skeletons worms in overlapping parts, the yellow circle shows 
the overlapping area (light-green in Fig.  3 a, b, c).
2a), half of worm 1 (part 1, 4) is above worm 2 (part 2, 3), while the 
other half (part 6) is below worm 3 (part 5, 7). Although the worm 
is very flexible, in large populations it is very unlikely that parts of 
its body change abruptly. We rely on this assumption to connect all 
the separate parts. And no matter if one worm is above or below, the 
algorithm will connect the non-overlapping parts with the overlapping 
parts if the angle between non-overlapping parts meets the condition.

2.6. Results validation

The Intersection over Union (IoU) index was used to evaluate the 
accuracy of the results obtained from SegElegans. This metric measures 
the accuracy by dividing the intersection of areas or segmentations 
in our case by the union of these (Eq.  (2)). The areas or segmenta-
tions used were the ground-truth (GT) and the results obtained after 
4

applying the proposed neural network model and after the proposed 
post-processing method (PT). 

𝐼𝑜𝑈 =
𝐺𝑇

⋂

𝑃𝑇
𝐺𝑇

⋃

𝑃𝑇
(2)

To test the results of the post-processing with the ground-truth, two 
evaluations were carried out using the IoU metric. The first evaluated 
the result of the whole image, while the second evaluated the accuracy 
of the result per worm. The IoU value of the whole image result was 
obtained by integrating the separated worms from the ground-truth 
and the separated worms from the post-processing results into a single 
image respectively.

On the other hand, the value per worm was obtained after averaging 
the success values of each worm per image. For each ground-truth 
worm, its respective matching worm was found from post-processing. If 
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Fig. 4. Post-processing method, part 2. Separation of worms into true-overlap parts. (a) Split overlapping worms into none-overlapping parts [1–7] and true-overlapping parts 
(light-green). (b) Recursive function to join non-overlapping worm parts from overlapping worms. (c, d, e) Overlapping worm separation result.
the matching worm has an IoU value equal to or greater than 0.5, it was 
considered a success, i.e., a value of 1, in the event that no matching 
worm was found or the IoU value was less than 0.5, the value was zero.

The Matlab 2018b Machine Learning Toolbox software was used 
to compare the statistics between the proposed SegElegans method 
and EmbedSeg method. The 𝑝-value (0.05) from Kolmogorov–Smirnov 
Test (for large samples equal to or greater than 50 data) was used to 
check data normality. If the 𝑝-value was greater than or equal to 0.05, 
the null hypothesis H0 was accepted (the data came from a normal 
distribution). Otherwise, the alternative hypothesis H1 was accepted 
(the data did not come from a normal distribution). To assess the 
statistical significance of the results, Student’s t-test was used if the data 
followed a normal distribution; otherwise, the Wilcoxon Signed Rank 
Test was employed.

3. Results

The ground-truth labels were obtained using the ImageJ software. 
A laboratory staff used this software to label each worm one by one in 
each of the training, validation, and test images. Manual tagging is done 
by creating a selection around the worm, typically using the polygon 
selection tool, in some implementation of the ImageJ image analysis 
software [4,5]. In our case we use the Fiji distribution, which comes 
prepackaged with a lot of relevant analysis plugins [3].

Training was performed with different windows to crop the in-
put images, 256 × 256, 512 × 512 (selected), and 768 × 768. With 
256 × 256 windows the output results of the networks had missing 
pixels in all segmentations especially in the edge and skeleton segmen-
tations, while with the other window sizes the missing pixel errors 
were similar and minimal. Although the 768 × 768 window had a 
small improvement in results compared to the 512 × 512 window, the 
computational cost of using this window size was very high. The cost 
of processing an input image with a 768 × 768 window was 0.2 [ms] 
while with a 512 × 512 window it was 0.1 [ms], not to mention that 
with the 512 × 512 window, the training/validation/test were faster.

During training, dividing the input image into 64 windows of 
512 × 512 pixels (8 horizontal and 8 vertical) allowed us to have a 
larger and more varied dataset, not to mention that the rotations and 
flips also helped to improve the generalization of the data and achieve 
the network convergence, avoiding overfitting.

Different original U-Net and modified U-Net architectures were 
trained and compared. The modifications consisted of changing each 
5

double convolution block in the decoder of the original architectures for 
a convolution + LSTM block. The U-Net architectures used were: U-Net 
standard [20], Alexandre’s U-Net [23], UMF U-Net [22], SmaAt DS [21] 
and SmaAT AT [21]. The results showed an average improvement 
using the modified U-Net architectures compared to the original ones, 
especially for images of segmentations worm parts Table  1.

The hardware used for training, validation, and testing was a X570 
Pro4 machine, AMD Ryzen 9 3900X 12-Core Processor with 128 GB 
of RAM, and NVIDIA GeForce RTX 3090 graphics card, Ubuntu 20.04 
64bits operating system. Our algorithm was implemented in a Python 
version 3.8.10 environment, using the Pytorch 1.8.1 libraries. The train-
ing and validation of the proposed neural network model took about 
48 h with the hardware mentioned above. The hyper-parameters used 
for the training and validation phase were Batch_size = 6, num_workers 
= 6, maximum epoch = 500. The optimizer used was ADAM with a 
learning rate = 0.0001, betas = [0.95, 0.999], eps = 1e-8, weight_decay 
= 1e-8. CrossEntropyLoss() and BCEWithLogitsLoss() as loss functions 
for the training/validation step, and finally, the scheduler used was the 
lr_scheduler. LambdaLR with hyperparameter lr_lambda = lambda_fn, 
and last_epoch = epoch - 1. The function lambda_fn was Eq.  (1).

During training the segmentation loss values of parts of worms and 
skeletons were obtained using the functions CrossEntropyLoss() and 
BCEWithLogitsLoss() respectively. If the average of the sum of both loss 
values (total loss) was less than the previous one, the neural network 
model was saved by overwriting the saved model. Table  1 shows the 
total parameters of each architecture as well as the average loss of the 
validation dataset and the average IoU of the test dataset for output1 
(worm parts segmentation) and output2 (skeletons segmentation). All 
these results were obtained using the best neural model saved after 
training each model.

The results using one neural network model with one encoder and 
two decoders were very similar to using two independent models (one 
encoder and one decoder for each model respectively). In addition, 
using a single model instead of two allowed the training times as 
well as the computational cost in image processing to be reduced. On 
the other hand, replacing double convolution blocks in the decoder 
with ConvLSTM blocks helped improve the results of network output 
segmentations thanks to the advantage of LSTM blocks to obtain spatial, 
temporal, and dimensional features.

The training of all architectures (EmbedSeg, original U-Net, and 
modified U-Net) was performed using the same function and hyperpa-
rameters of the learning rate scheduler, the same training/validation 
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Table 1
Comparison of trained models. This table shows the results of the average loss and average intersection over union (IoU) metric for each output 
of the different neural network models evaluated.
 Model Parameters Average loss Average Iou
 Segmentation Skeleton Segmentation Skeleton 
 U-Net [20] 25.1111 M 0.1302 0.0178 0.1806 0.6718  
 U-Net enc + dec ConvLSTM 28.5775 M 0.1097 0.0181 0.7553 0.6781  
 U-Net A. [23] 25.1229 M 0.0937 0.0225 0.7691 0.6858  
 U-Net A. enc + dec ConvLSTM 28.5834 M 0.1142 0.0206 0.7847 0.6889  
 UMF U-Net [22] 25.1229 M 0.0855 0.0200 0.7635 0.6796  
 UMF U-Net enc + dec ConvLSTM 28.5834 M 0.1072 0.0193 0.7814 0.6800  
 SmaAt DS [21] 5.8391 M 0.0836 0.0155 0.7593 0.6790  
 SmaAt DS enc + dec ConvLSTM 21.3986 M 0.0981 0.0173 0.7761 0.6795  
 SmaAt AT [21] 25.2013 M 0.1018 0.0203 0.7700 0.6859  
 SmaAt AT enc + dec ConvLSTM 28.6618 M 0.1095 0.0186 0.7855 0.6907  
Table 2
Comparison of architectures and models after post-processing. This table compares the final results obtained using the proposed method (SmaAt 
AT enc + Dec ConvLSTM) and post-processing method Section 2.5 with the method [26]. This table also shows a comparison with other U-Net 
architectures proposed by other authors.
 Avg. IoU [0.5] Avg. IoU [0.7] Avg. IoU [0.9]
 Whole image Per worm Whole image Per worm Whole image Per worm 
 EmbedSeg [26] 0.8775 0.9017 0.8230 0.8867 0.6891 0.7247  
 U-Net A. [23] 0.9287 0.9489 0.9287 0.9079 0.9287 0.9079  
 U-Net A. enc + dec ConvLSTM 0.9308 0.9531 0.9292 0.9265 0.9292 0.9265  
 UMF U-Net [22] 0.9266 0.9382 0.9266 0.9088 0.9266 0.9088  
 UMF U-Net enc + dec ConvLSTM 0.9335 0.9545 0.8607 0.9224 0.8607 0.9224  
 SmaAt DS [21] 0.9272 0.9238 0.9272 0.8895 0.9272 0.8895  
 SmaAt DS enc + dec ConvLSTM 0.9295 0.9610 0.9295 0.9311 0.9295 0.9311  
 SmaAt AT [21] 0.9343 0.9498 0.9343 0.9260 0.9343 0.9260  
 SmaAt AT enc + dec ConvLSTM 0.9355 0.9627 0.9355 0.9461 0.9335 0.9461  
datasets as well as the data augmentation methods. After training, 
the test dataset was processed using the post-processing methods from 
EmbedSeg [26] and the method proposed in this work (Section 2.5) to 
obtain masks or segmentations of individual worms respectively. Table 
2 shows the average results after using these post-processing methods 
for the whole image and per worm.

Figs.  5–7 show the average IoU values for all architectures with 
different threshold, as well as the mean (green line) and median (gray 
line) values using a box plot.

Statistical analysis was performed to compare the results obtained 
with (EmbedSeg [26]) and using the proposed method. The 𝑝-value 
(0.05) was used to evaluate statistical significance. Normality was first 
analyzed with the Kolmogorov–Smirnov Test to assess the difference 
between both methods. This test is used for large sample sizes (n 
>= 50). The results indicated that they did not come from a normal 
distribution, 𝑝-value = 𝑝 < 0.001, much lower than the significance 
value of 0.05 (Table  3); therefore, the alternative hypothesis H1 was 
accepted, and the Wilcoxon Signed Range Test was used (Table  4, 5).

Finally, Fig.  8 shows a comparison between the results obtained 
using the proposed worm segmentation method (column three) and 
the manually labeled ground-truth images. Shown in the first column 
are the input images of the proposed neural network model. The 
result of each worm is shown with a color and a box with a number 
respectively. These results are saved in .tiff files, where each channel 
saves the mask or segmentation of each worm. A demo of the proposed 
method (proposed neural network method and post-processing method) 
is found in the source code section.

4. Discussion

The bioimaging community has flourished over the years thanks 
to the existence of ImageJ [33], which has provided a standardized 
platform that is reliable, openly available, highly versatile thanks to 
the myriad of community contributed plugins and accessible even to 
6

Table 3
Normality test on the difference of methods (Pro-
posed method – EmbedSeg). The 𝑝-value obtained was 
1.87E−6 less than the significance value of 0.05, thus 
the null hypothesis was rejected and the alternative 
hypothesis H1 was accepted (the data did not come 
from a normal distribution). Once the alternative hy-
pothesis was accepted, the Wilcoxon signed-rank test 
was used to evaluate both methods.
 Diff  
 N 50  
 Minimum −0.0170  
 Maximum 0.8674  
 Mean 0.0581  
 Std. Deviation 0.1599  
 p-value 1.872E−06 

Table 4
Wilcoxon Signed Rank Test. The Wilcoxon signed-rank test table shows the difference 
between two related samples across positive, negative, and tied ranks.
 N Mean rank Sum ranks 
 Positive 30a 31.6333 949  
 Negative 20b 16.3000 326  
 Ties 0c  
 Total 50  
a Proposed method > EmbedSeg
b Proposed method < EmbedSeg
c Proposed method = EmbedSeg

users with minimal technical understanding of image processing. The 
augmentation of ImageJ with the powers of machine/deep learning is 
the natural next step in the evolution of the platform. Several others 
have made their contribution to this evolution by developing new 
networks, ways to train networks inside ImageJ as well as methods 
to easily connect existing networks to the system [34–38]. SegElegans 
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Fig. 5. Comparison of whole IoU Image average from all models using 0.5 threshold. EmbedSeg N = 50, mean = 0.8775, median = 0.9372, standard deviation = 0.1775, variance 
= 0.0315. U-Net A. N = 50, mean = 0.9287, median = 0.9416, standard deviation = 0.0315, variance = 0.0010. U-Net A. enc + dec ConvLSTM N = 50, mean = 0.9308, median 
= 0.9531, standard deviation = 0.0309, variance = 0.0010. UMF U-Net N = 50, mean = 0.9266, median = 0.9384, standard deviation = 0.0315, variance = 0.0010. UMF U-Net 
enc + dec ConvLSTM N = 50, mean = 0.9335, median = 0.9455, standard deviation = 0.0307, variance = 0.0009. SmaAt DS N = 50, mean = 0.9272, median = 0.9384, standard 
deviation = 0.0320, variance = 0.0010. SmaAt DS enc + dec ConvLSTM N = 50, mean = 0.9295, median = 0.9448, standard deviation = 0.0343, variance = 0.0012. SmaAt AT N 
= 50, mean = 0.9343, median = 0.9470, standard deviation = 0.0298, variance = 0.0009. SmaAt AT enc + dec ConvLSTM N = 50, mean = 0.9355, median = 0.9472, standard 
deviation = 0.0297, variance = 0.0009.
Fig. 6. Comparison of whole IoU Image average from all models using 0.7 threshold. EmbedSeg N = 50, mean = 0.8230, median = 0.9033, standard deviation = 0.2225, variance 
= 0.0495. U-Net A. N = 50, mean = 0.9287, median = 0.9416, standard deviation = 0.0315, variance = 0.0010. U-Net A. enc + dec ConvLSTM N = 50, mean = 0.9292, median 
= 0.9402, standard deviation = 0.0309, variance = 0.0010. UMF U-Net N = 50, mean = 0.9266, median = 0.9384, standard deviation = 0.0315, variance = 0.0010. UMF U-Net 
enc + dec ConvLSTM N = 50, mean = 0.8607, median = 0.8813, standard deviation = 0.0953, variance = 0.0091. SmaAt DS N = 50, mean = 0.9272, median = 0.9384, standard 
deviation = 0.0320, variance = 0.0010. SmaAt DS enc + dec ConvLSTM N = 50, mean = 0.9295, median = 0.9448, standard deviation = 0.0343, variance = 0.0012. SmaAt AT N 
= 50, mean = 0.9343, median = 0.9470, standard deviation = 0.0298, variance = 0.0009. SmaAt AT enc + dec ConvLSTM N = 50, mean = 0.9335, median = 0.9455, standard 
deviation = 0.0307, variance = 0.0009.
aims to be another contribution to this ecosystem, one trying to address 
an issue that is relative niche yet rather important to a specific part of 
the biomedical research community.

The analysis of microscopic images featuring large numbers of C. 
elegans (possibly dozens of individual animals) in ImageJ via manual 
segmentation can be a quite time-consuming and tedious process. 
Nevertheless it has been the preferrable choice for worm researchers 
who sought to collect accurate data, since existing methods to obtain 
segmentations automatically have accuracy issues, especially in regards 
to dealing with the common phenomenon of touching or overlapping 
7

worms. SegElegans resolves this issue and can simultaneously accu-
rately differentiate individual worms while also obtaining excellent 
segmentation against the background and various types of noise (worm 
eggs, dark objects, debris, stains). It can even automatically detect 
(and suggest excluding) worms that may be unfit for analysis because 
they are damaged, obscured by the edge of the image or too small. 
It achieves all of this thanks to its novel dual architecture that allows 
us to extract the ideal information from multiple networks that are 
optimized for the detection of different features of the image. Our tests 
indicate that this architecture outperforms the next best recent instance 
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Fig. 7. Comparison of whole IoU Image average from all models using 0.9 threshold. EmbedSeg N = 50, mean = 0.6891, median = 0.7572, standard deviation = 0.2764, variance 
= 0.0764. U-Net A. N = 50, mean = 0.9287, median = 0.9416, standard deviation = 0.0315, variance = 0.0010. U-Net A. enc + dec ConvLSTM N = 50, mean = 0.9292, median 
= 0.9402, standard deviation = 0.0309, variance = 0.0010. UMF U-Net N = 50, mean = 0.9266, median = 0.9384, standard deviation = 0.0315, variance = 0.0010. UMF U-Net 
enc + dec ConvLSTM N = 50, mean = 0.8607, median = 0.8813, standard deviation = 0.0953, variance = 0.0091. SmaAt DS N = 50, mean = 0.9272, median = 0.9384, standard 
deviation = 0.0320, variance = 0.0010. SmaAt DS enc + dec ConvLSTM N = 50, mean = 0.9295, median = 0.9448, standard deviation = 0.0343, variance = 0.0012. SmaAt AT N 
= 50, mean = 0.9343, median = 0.9470, standard deviation = 0.0298, variance = 0.0009. SmaAt AT enc + dec ConvLSTM N = 50, mean = 0.9335, median = 0.9455, standard 
deviation = 0.0307, variance = 0.0009.
Fig. 8. Worm prediction results. The images on the left show the data input to the proposed neuronal network model, the center images show the ground-truth labels (GT), and 
the images on the right show the result of the proposed method. The IoU results for whole image are 0.9122, 0.8215, 0.8806, while the results per worm are 1, 0.9063, 0.96875 
(row 1, 2, 3, respectively).
segmentation method (EmbedSeg) and various other neural network 
architectures even when using standard U-Net type network blocks. 
Further optimization using a SmaAT AT encoder block and ConvLSTM 
decoder blocks allows us to achieve an IoU score of 0.9627, ∼5.8 better 
than EmbedSeg.
8

We are hopeful that SegElegans, even in this initial version, will be a 
great tool for C. elegans labs that will permit them to obtain results at a 
fraction of the time while also enjoying the consistency of an automatic 
method that is independent of user bias and proficiency. Following this 
first public release, we hope to be able to further improve the system’s 
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Table 5
The 𝑝-value obtained with the Wilcoxon rank test was 0.0026 less than the significance 
value of 0.05, thus concluding there was a statistically significant difference between 
both models. 
 Proposed method < EmbedSeg 
 z-val −3.0071𝑏  
 p-value 0.002638  
a. Wilcoxon Signed Ranks Test.
b. Based on negative ranks.

accuracy with larger scale training, optimize the postprocessing algo-
rithm to be better and faster, train additional networks with the same 
architecture for the selection of individual C. elegans regions/body parts 
and provide additional ways to access SegElegans, ideally directly from 
within ImageJ [35].

5. Conclusions

The processing of numerous microscopic images, typically featuring 
50–60 worms, can be challenging due to the tendency of worms to 
touch or cluster. The SegElegans method proposed in this paper allows 
obtaining individual segmentations of C. elegans in microscopic images. 
SegElegans effectively separates overlapping C. elegans and provides 
excellent background segmentation, removing various types of noise 
(worm eggs, dark objects, debris, stains). (See Fig.  7 for details) We 
also meticulously assessed the efficacy of our novel dual architecture 
approach. Interestingly, SegElegans outperforms the best recent in-
stance segmentation method (EmbedSeg) and various neural network 
architectures. The results showed better average IoU values with U-Net 
type architectures than with a recent instance segmentation method 
(EmbedSeg). The best results were obtained with SegElegans method 
utilizing the SmaAtATenc+decConvLSTM neural networks which had 
an improvement of 5.8% over theEmbedSeg method. To enhance the 
accuracy of individual worm predictions, future research should pri-
oritize expanding dataset availability, refining hyperparameter adjust-
ments, exploring advanced segmentation algorithms, and enhancing 
post-processing techniques.

SegElegans is an effective application for researchers, aiding in the 
segmentation of entire worms. Importantly, the produced whole-body 
segmentations/masks from brightfield images can be co-registered with 
darkfield fluorescent images (obtained from the same imaging system) 
to facilitate more sophisticated analyses such as marker quantification 
in microscopic images.

6. Source code

The proposed method was developed in Ubuntu-Linux 20.04 64 bits 
using python3.8.10 with the Pytorch 1.8.1 libraries. The source code is 
on GitHub; it is open source and can be downloaded from the repository 
at https://github.com/playanaC/SegElegan.git. The demo application 
can be used at the googlecolab link:

https://github.com/playanaC/SegElegan/blob/main/1_Demo_predi
ct.ipynb.
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